
Evaluation of Relational Operations:
Other Techniques

Chapter 14
Sayyed Nezhadi

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Sailors:

– Each tuple is 50 bytes long, 80 tuples per page, 500
pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Last Week

• Index nested loop

• Sort-merge join

Simple Nested Loops Join

• For each tuple in the outer relation R, we scan the
entire inner relation S.

– Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.

• Page-oriented Nested Loops join: For each page of R,
get each page of S, and write out matching pairs of
tuples <r, s>, where r is in R-page and S is in S-page.

– Cost: M + M*N = 1000 + 1000*500

– If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Block Nested Loops Join

• Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

. . .
. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Examples of Block Nested Loops
• Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks =
• With Reserves (R) as outer, and 100 pages of R:

– Cost of scanning R is 1000 I/Os; a total of 10 blocks.
– Per block of R, we scan Sailors (S); 10*500 I/Os.
– If space for just 90 pages of R, we would scan S 12 times.

• With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves; 5*1000 I/Os.

• With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.

é ù# /of pages of outer blocksize

Hash-Join
• Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

v Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hashfunction
h B-1

Partitions

1

2

B-1

. . .

Observations on Hash-Join

• #partitions k <= B-1 (why?), and B-2 > size of largest
partition to be held in memory. Assuming uniformly
sized partitions, and maximizing k, we get:
– k= B-1, and M/(B-1) < B-2, i.e., B must be >

• If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

• If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can apply
hash-join technique recursively to do the join of this R-
partition with corresponding S-partition.

M

Cost of Hash-Join

• In partitioning phase, read+write both relns;
2(M+N). In matching phase, read both relns; M+N
I/Os.

• In our running example, this is a total of 4500 I/Os.
• Sort-Merge Join vs. Hash Join:

– Given a minimum amount of memory (what is this, for
each?) both have a cost of 3(M+N) I/Os. Hash Join
superior on this count if relation sizes differ greatly.
Also, Hash Join shown to be highly parallelizable.

– Sort-Merge less sensitive to data skew; result is sorted.

General Join Conditions
• Equalities over several attributes (e.g., R.sid=S.sid AND

R.rname=S.sname):
– For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
– For Sort-Merge and Hash Join, sort/partition on combination

of the two join columns.
• Inequality conditions (e.g., R.rname < S.sname):

– For Index NL, need (clustered!) B+ tree index.
• Range probes on inner; # matches likely to be much higher than for

equality joins.
– Hash Join, Sort Merge Join not applicable.
– Block NL quite likely to be the best join method here.

Using an Index for Selections
• Cost depends on #qualifying tuples, and clustering.

– Cost of finding qualifying data entries (typically small) plus
cost of retrieving records (could be large w/o clustering).

– In example, assuming uniform distribution of names, about
10% of tuples qualify (100 pages, 10000 tuples). With a
clustered index, cost is little more than 100 I/Os; if
unclustered, upto 10000 I/Os!

• Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order. This ensures that each data page is

looked at just once (though # of such pages likely to be
higher than with clustering).

Two Approaches to General Selections
• First approach: Find the most selective access path,

retrieve tuples using it, and apply any remaining terms
that don’t match the index:
– Most selective access path: An index or file scan that we

estimate will require the fewest page I/Os.
– Terms that match this index reduce the number of tuples

retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

– Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index
on day can be used; then, bid=5 and sid=3 must be checked
for each retrieved tuple. Similarly, a hash index on <bid,
sid> could be used; day<8/9/94 must then be checked.

Intersection of Rids

• Second approach (if we have 2 or more matching
indexes that use Alternatives (2) or (3) for data
entries):
– Get sets of rids of data records using each matching index.
– Then intersect these sets of rids (we’ll discuss intersection

soon!)
– Retrieve the records and apply any remaining terms.
– Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+

tree index on day and an index on sid, both using
Alternative (2), we can retrieve rids of records satisfying
day<8/9/94 using the first, rids of recs satisfying sid=3 using
the second, intersect, retrieve records and check bid=5.

The Projection Operation

• An approach based on sorting:
– Modify Pass 0 of external sort to eliminate unwanted fields.

Thus, runs of about 2B pages are produced, but tuples in
runs are smaller than input tuples. (Size ratio depends on #
and size of fields that are dropped.)

– Modify Pass 0 & merging passes to eliminate duplicates.
Thus, number of result tuples smaller than input.
(Difference depends on # of duplicates.)

– Cost: In Pass 0, read original relation (size M), write out
same number of smaller (distinct) tuples. In merging
passes, fewer tuples written out in each pass. Reserves:
1000 input pages reduced to 250 in Pass 0 if size ratio is
0.25

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Projection Based on Hashing
• Partitioning phase: Read R using one input buffer. For

each tuple, discard unwanted fields, apply hash
function h1 to choose one of B-1 output buffers.
– Result is B-1 partitions (of tuples with no unwanted fields).

2 tuples from different partitions guaranteed to be distinct.
• Duplicate elimination phase: For each partition, read

it and build an in-memory hash table, using hash fn h2
(<> h1) on all fields, while discarding duplicates.
– If partition does not fit in memory, can apply hash-based

projection algorithm recursively to this partition.
• Cost: For partitioning, read R, write out each tuple,

but with fewer fields. This is read in next phase.

Discussion of Projection

• Sort-based approach is the standard; better handling of
skew and result is sorted.

• If an index on the relation contains all wanted
attributes in its search key, can do index-only scan.
– Apply projection techniques to data entries (much smaller!)

• If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, can do even better:
– Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

Set Operations
• Intersection and cross-product special cases of join.
• Union (Distinct) and Except similar; we’ll do union.
• Sorting based approach to union:

– Sort both relations (on combination of all attributes).
• Remove duplicates? (if not base relations)

– Scan sorted relations and merge them.
– Alternative: Merge runs from Pass 0 for both relations.

• Hash based approach to union:
– Partition R and S using hash function h.
– For each S-partition, build in-memory hash table (using h2), scan

corresponding R-partition and add tuples to table while
discarding duplicates.

Aggregate Operations (AVG, MIN, etc.)
• Without grouping:

– In general, requires scanning the relation.
– Given index whose search key includes all attributes in the SELECT

(if there is no WHERE), can do index-only scan.
• With grouping:

– Sort on group-by attributes, then scan relation and compute
aggregate for each group. (Can improve upon this by combining
sorting and aggregate computation.)

– Similar approach based on hashing on group-by attributes.
– Given tree index whose search key includes all attributes in SELECT,

WHERE and GROUP BY clauses, can do index-only scan; if group-by
attributes form prefix of search key, can retrieve data
entries/tuples in group-by order.

Impact of Buffering

• If several operations are executing concurrently,
estimating the number of available buffer pages is
guesswork.

• Repeated access patterns interact with buffer
replacement policy.
– Nested Join
– e.g., Inner relation is scanned repeatedly in Simple

Nested Loop Join. With enough buffer pages to hold
inner, replacement policy does not matter. Otherwise,
MRU is best, LRU is worst (sequential flooding).

– Does replacement policy matter for Block Nested Loops?
– What about Index Nested Loops? Sort-Merge Join?

Highlights of System R Optimizer

• Impact:

– Most widely used currently; works well for < 10 joins.

• Cost estimation: Approximate art at best.

– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.

– Considers combination of CPU and I/O costs.

• Plan Space: Too large, must be pruned.

– Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into

the next operator without storing it in a temporary relation.

– Cartesian products avoided.

Cost Estimation

• For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

– Must also estimate size of result for each
operation in tree!
• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Size Estimation and Reduction Factors

• Consider a query block:
• Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
• Reduction factor (RF) associated with each term

reflects the impact of the term in reducing result size.
Result cardinality = Max # tuples * product of all RF’s.
– Implicit assumption that terms are independent!
– Term col=value has RF 1/NKeys(I), given index I on col
– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Motivating Example

• Cost: 500+500*1000 I/Os
• By no means the worst plan!
• Misses several opportunities:

selections could have been `pushed’
earlier, no use is made of any
available indexes, etc.

• Goal of optimization: To find more
efficient plans that compute the
same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Alternative Plans 1
(No Indexes)

• Main difference: push selects.
• With 5 buffers, cost of plan:

– Scan Reserves (1000) + write temp T1 (10 pages, if we
have 100 boats, uniform distribution).

– Scan Sailors (500) + write temp T2 (250 pages, if we
have 10 ratings).

– Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
– Total: 4060 page I/Os.

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to

temp T1)
(Scan;
write to
temp T2)

(Sort-Merge Join)

Buffered Nested Loop(BNL)

• Buffered Nested Loop

– Bring pages to memory in Groups

– Hash the pages

– Scan the second table to find matches

– For each 3 page block from T1, scan the entire T2

• BNL, join cost = 10+4*250, total cost = 2770, why?

• If we `push’ projections, T1 has only sid, T2 only sid and

sname:

– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total <

2000.

Alternative Plans 2
With Indexes

• With clustered index on bid of Reserves,
we get 100,000/100 = 1000 tuples on
1000/100 = 10 pages.

• INL with pipelining (outer is not
materialized).

❖ Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

❖ Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

❖ Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Summary
• There are several alternative evaluation algorithms for each

relational operator.
• A query is evaluated by converting it to a tree of operators and

evaluating the operators in the tree.
• Must understand query optimization in order to fully understand the

performance impact of a given database design (relations, indexes)
on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.
– Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

